

MATHEMATICS HIGHER LEVEL PAPER 1

Monday 7 May 2007 (afternoon)

2 hours

(Candi	idate	sessi	ion n	umbe	er	

0

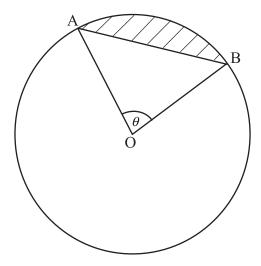
INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

1.	Trian	igle ABC has $\hat{C} = 42^{\circ}$, BC = 1.74 cm, and area 1.19 cm ² .
	(a)	Find AC.
	(b)	Find AB.

2.	The	events	s <i>A</i> and <i>B</i> are such that $P(A) = 0.5$, $P(B) = 0.3$, $P(A \cup B) = 0.6$.	
	(a)	(i)	Find the value of $P(A \cap B)$.	
		(ii)	Hence show that A and B are not independent.	
	(b)	Find	the value of $P(B A)$.	


3.	of su	experiment, a trial is repeated n times. The trials are independent and the probability p access in each trial is constant. Let X be the number of successes in the n trials mean of X is 0.4 and the standard deviation is 0.6.
	(a)	Find p .
	(b)	Find n .

- 4. The function f is defined as $f(x) = \frac{3x-4}{x+2}$, $x \ne -2$.
 - (a) Find an expression for $f^{-1}(x)$.

		 			 		-	 																 					

5. The diagram shows a circle centre O and radius 1, with $A\hat{O}B = \theta$, $\theta \neq 0$. The area of $\triangle AOB$ is three times the shaded area.

Find the value of θ .

- **6.** Let $f(x) = x \ln x x$, x > 0.
 - (a) Find f'(x).

(b)	Using integration by parts find	(ln	$r)^2 dr$
•	U,	Oshig integration by parts find	(111	λ μ μ

	 •	•	-			•			٠						•				•	•	•	•		•	•		•		•	•	•	•	٠	•	•			 			•	•		•		•			•													•	•	•			
																																																									•	•	•	•	•	•	•	•	•	•	
		•					•	٠	•	•	•	•	•	•						•	•			•								•					•	 			•		•						•		•	•				•		•	•	•			•	•	•	•	
•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	 •					•	•	٠		•	•			•	•				•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	٠	٠	 			•	•	•	•					•	•			•	٠	٠		٠	٠	٠		٠		٠			٠	
																													•									 			•			•																							

7. The complex number z is defined by

(b)

$$z = 4\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) + 4\sqrt{3}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right).$$

(a) Express z in the form $re^{i\theta}$, where r and θ have exact values.

Find the cube roots of z, expressing in the form $re^{i\theta}$, where r and θ have exact values.

						 		 		 					-												

- 8. The function f is defined as $f(x) = \sin x \ln x$ for $x \in [0.5, 3.5]$.
 - (a) Write down the *x*-intercepts.

(b)	The area	above	the <i>x</i> -axis	is A	and	the	total	area	below	the	<i>x</i> -axis	is <i>B</i> .	If	A = kB
	find k .													

9. A continuous random variable X has probability density function f defined by

$$f(x) = \begin{cases} e^x, & \text{for } 0 \le x \le \ln 2\\ 0, & \text{otherwise.} \end{cases}$$

Find the **exact** value of E(X).

10. Consider the vectors a, b, c, d

$$\boldsymbol{a} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}, \ \boldsymbol{c} = \begin{pmatrix} 3 \\ 1 \\ \lambda \end{pmatrix}, \ \boldsymbol{d} = \begin{pmatrix} \mu \\ -2 \\ 1 \end{pmatrix}.$$

Let $s = (a \cdot b)c + d$, where s is perpendicular to a.

Find an expression for λ in terms of μ .

	Let $y = x \arcsin x$, $x \in]-1, 1[$. Show that	$\frac{\mathrm{d}^2 y}{-}$	$2-x^2$
11.	Let $y = x \arcsin x$, $x \in]-1, 1[$. Show that	$\frac{1}{dx^2}$	$\frac{3}{2}$.
		CLU	$(1-x^2)^2$

12.	The quadratic function Q is defined by $Q(x) = kx^2 - (k-3)x + (k-8)$, $k \in \mathbb{R}$. Determine the values of k for which $Q(x) = 0$ has no real roots.

13. Let $A = \begin{pmatrix} 1 & 6 \\ 4 & 3 \end{pmatrix}$ and $X = \begin{pmatrix} x \\ y \end{pmatrix}$. Given that AX = kX, where $k \in \mathbb{R}$, find the values of k for which there is an infinity of solutions for X.

- 14. An infinite geometric series is given by $\sum_{k=1}^{\infty} 2(4-3x)^k$.
 - (a) Find the values of x for which the series has a finite sum.

(b)	When $x = 1.2$,	find the	minimum	number	of terms	needed	to g	give a	ı sum	which	is
	greater than 1.3	328									

15.	Given that e ^{xy}	$y^{2} - y^{2} \ln x = e$	for $x \ge 1$, find	$\frac{dy}{dx}$ at the point	(1, 1).	

16.	Solve the differential equation $(x^2 + 1)\frac{dy}{dx} - xy = 0$ where $x > 0$, $y > 0$, given that $y = 1$ when $x = 1$.
	when $x - 1$.

17. The functions f and g are defined by

$$f(x) = 2x-1$$
,
 $g(x) = \frac{x}{x+1}$, $x \neq -1$.

Fin	ıd 1	the	7	/al	u	es	Oi	ſχ	: f	or	· V	vh	ic	h	(.	f	0 8	g)	(.	x)	≤	<u> </u>	g	٥,	f)	()	r)											
			•		٠			•	•	•	•		•		٠		•	•		•			•		•		•	 •	 •	 •	 ٠	 ٠	 •	 •	 ٠	 	. •	
					٠								٠		٠										•			 ٠			 ٠	 ٠			 ٠	 		
	٠.		•					•		•			•												•			 •								 		

18. The following table shows the values of two functions f and g and their first derivatives when x = 1 and x = 0.

x	f(x)	f'(x)	g(x)	g'(x)
0	4	1	-4	5
1	-2	3	-1	2

- (a) Find the derivative of $\frac{3f(x)}{g(x)-1}$ when x = 0.
- (b) Find the derivative of f(g(x)+2x) when x=1.

19.	The solution of $2^{2x+3} = 2^{x+1} + 3$ can be expressed in the form $a + \log_2 b$ where $a, b \in \mathbb{Z}$. Find the value of a and of b .

20. The volume of a solid is given by

$$V = \frac{4}{3}\pi r^3 + \pi r^2 h \ .$$

At the time when the radius is 3 cm, the volume is 81π cm³, the radius is changing at a rate of 2 cm/min and the volume is changing at a rate of 204π cm³/min . Find the rate of change of the height at this time.
